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1 Introduction

Tracking the spread of the SARs-CoV-2 virus and subsequently the evolution of the COVID-19

epidemic is important for managing the outbreak (Shea et al., 2020), evaluating the effectiveness of

different policy tools to contain it (Kraemer et al., 2020; Chinazzi et al., 2020; Hartl et al., 2020), and

for effectively communicating risks and undertaking different policy actions (WHO, 2005; Saliou,

1994), such as enforcing or lifting social distancing measures (WHO, 2020; Greenstone and Nigam,

2020). The effectiveness of surveillance systems is thus critical for the management of pandemics

(Olson et al., 2020; Carey et al., 2020; Woolhouse et al., 2015; Brookmeyer, 1991; Krause, 1992).

Low surveillance capacity represents not only a threat to the prompt identification of outbreaks

in low and middle-income countries, but also for assessing their evolution comparatively across

countries (Halliday et al., 2017).

Reporting delays for deaths, defined as the time difference between when a death occurs and

when it is registered in the system, have been long recognized in various settings (AbouZahr et al.,

2015; Bird, 2015). Nevertheless, in the context of COVID-19, many academics, policy-makers,

and media outlets are tracking the pandemic’s evolution within and across countries by focusing on

death counts (Weinberger et al., 2020), arguing that they are more easily identified and consistently

reported than cases (Roser et al., 2020). However, data on death counts may exhibit shortcomings

similar to case counts due to reporting delays, and the extent of these issues may also vary across

and within countries. This, in turn, may limit policy-makers’ ability to effectively communicate

the risks associated with individuals’ behavior in the midst of the pandemic (Avery et al., 2020).

This paper seeks to characterize reporting delays of COVID-19 deaths across two distinct set-

tings, contrasting the various determinants of these delays and illustrating the implications of these

reporting delays for modeling the epidemic. We focus on England and Mexico to contrast delays

between a developed and developing country, and since both governments publicly release detailed

data that allow us to construct measures of reporting delays.

We document that death counts due to COVID-19 are reported with different delays in England

and Mexico. Reporting delays in Mexico are larger, more heterogeneous across space, and most

importantly, are more affected to the total number of actual occurred deaths in a particular location

on a given day. We then illustrate the implications of not accounting for delays in reporting by
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estimating simple SIR models for both countries accounting and not accounting for reporting delays,

showing very different predictions for Mexico, consistent with the larger and more heterogeneous

delays.

There is a rapidly growing literature touching on various topics related to the COVID-19 pan-

demic. In particular, our paper speaks directly to two strands of this work. First, recent papers

explore how persuasive and/or informative messages correlate with or affect compliance with social

distancing measures, which are important for both the economic costs associated with the pan-

demic and for the evolution of the epidemiological curve (Ajzenman et al., 2020; Allcott et al.,

2020; Barrios and Hochberg, 2020; Bursztyn et al., 2020; Grossman et al., 2020; Kushner Gadarian

et al., 2020; Painter and Qiu, 2020).

Second, a large literature is attempting to identify the additional restrictions and challenges

that low and middle-income countries face in the management of and economic recovery from

this pandemic, such as the capacity of the healthcare system, poverty, inequality, and corruption

(Gallego et al., 2020; Gottlieb et al., 2020; Loayza, 2020; Monroy-Gómez-Franco, 2020; Ribeiro and

Leist, 2020; Walker et al., 2020). By identifying a potential difference in information quality in a

middle-income country, we shed light on an additional challenge that policy-makers may face when

managing epidemics.

Our main contribution consists in contrasting reporting delays for deaths in two very different

settings. We argue (and show supporting evidence in the online appendix) that the difference

between Mexico and England in terms of reporting delays is consistent with lower state capacity.

To the extent that this is a widespread problem across the developing world, our insights imply that

successfully managing the epidemic in these regions will be further complicated by lower quality

real-time information.

The rest of the paper is organized as follows. Section 2 presents the data and some descriptives

of the evolution of deaths during the COVID-19 epidemic in England and Mexico, as well as the

average delays in reporting these deaths. Section 3 decomposes delays into location shifters, date

shifters, and the effect of total deaths. Section 4 then illustrates the implications of these reporting

delays when modeling the evolution of the epidemic. Lastly, Section 5 concludes.
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2 Data and Descriptive Evidence

2.1 Death reports in England and Mexico

We obtain publicly-available data with daily COVID-19 death counts from the England NHS,

available from April 1 to June 7, 2020.1 Each file contains the deaths from the corresponding

reporting period, and indicates the date at which these reported deaths occurred. These counts

are further disaggregated by NHS trust, which correspond to groups of hospitals and healthcare

providers in the public system. Our data covers 198 NHS trusts across seven regions.2 It should

be noted that these counts do not include deaths that occur outside the hospital system.

For Mexico, we obtain publicly-available data from the Ministry of Health that tracks all patients

that were ever suspected of having COVID-19 over time.3 The government uses this database to

announce cumulative counts and deaths in a nightly press conference, allowing us to identify each

of the newly reported cases and deaths on each date and the deaths’ date of occurrence. We observe

a few characteristics for each patient, including their municipality of residence. Unfortunately, we

cannot observe which healthcare facility they visit and thus reports them to the database. We use

these data to construct counts of deaths that are reported each day, as well as the actual date of

death for each municipality. Our data includes 593 municipalities.4

2.2 Reporting delays in England and Mexico

We present the evolution of death counts over time for each country in Figure 1, distinguishing

between aggregates based on the actual date of death and those based on the date of reporting.

Figure 1a shows the daily number of total deaths in England by date, while Figure 1b shows the

corresponding cumulative deaths. Figures 1c and 1d show analogous plots for Mexico. Over all,

we observe that the evolution of death counts over time differs significantly between aggregates by

1Data are available at https://www.england.nhs.uk/statistics/statistical-work-areas/

covid-19-daily-deaths/. We were unable to find similar data for other countries in the United Kingdom.
2These regions are East England, London, Midlands, North East and Yorkshire, North West, South East, and

South West.
3Data are available at https://www.gob.mx/salud/documentos/datos-abiertos-bases-historicas-direccion_

general-de-epidemiologia.
4Although Mexico has 2,448 municipalities in total, the remaining 1,855 are those that have not reported any

COVID-19 cases. These are mostly rural areas.
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date of occurrence and date of reporting, especially for Mexico, where delays also appear to be

larger.

From these datasets, we construct measures of the delays with which deaths are reported by each

location in each period, conditional on having at least one observed occurred death. Specifically,

we compute the average delay with which deaths that occurred in each location-date pair were

reported, conditional on having being reported within k days after their occurrence. Since the data

are naturally censored, we drop all deaths reported in the last k days of available reports for each

country, regardless of their date of occurrence. The implicit assumption is that the probability of

observing all deaths that occurred on a given date is one (or close to one) when relying on reports

up to k days after that date. We focus on k = 14, but present results for k = 21 also.

We show the distribution of average reporting delays in Figure 2, where we have restricted the

data by setting k = 14.5 We present a direct comparison between England and Mexico in Figure 2a,

and then restrict to data for England in Figure 2b and Mexico in Figure 2c. These last two graphs

further split the sample based on the median date of death.

Figure 2a documents that the average reporting delay is larger in Mexico, with a distribution

that is not only mean-shifted but also has a heavier right tail. Figures 2b and 2c further show that

the average delay in England decreased over time, while it did not for Mexico. Given the differential

timing of the epidemic, one must be cautious when interpreting these differences. Nevertheless,

these plots do suggest that trends in delays are not the same between England and Mexico.

There are many potential reasons for why Mexico, a middle-income country, has significantly

larger reporting delays than a developed country like England. Although we cannot fully discard

alternative explanations, we posit that larger delays are correlated with state capacity, which is

lower in Mexico. We present suggestive evidence consistent with this explanation in Figure A2

in the online appendix. We show that the municipalities in Mexico with larger reporting delays

are those that have fewer healthcare units per capita, slightly fewer medical staff per capita, and

higher patient volumes per healthcare unit. Furthermore, municipalities where a larger share of

the population is covered by the public healthcare system, which would indicate a larger presence

of the state, are those with significantly lower reporting delays. Over all, this suggests that state

capacity plays a key role in decreasing reporting delays.

5See Figure A1 in the online appendix for analogous graphs with k = 21.
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3 Determinants of reporting delays

There are at least three different determinants of reporting delays for deaths that matter for tracking

the evolution of a pandemic. First, there may be spatial differences in delays. Different reporting

units may face different staffing and infrastructure constraints that can lead to variation in their

reporting capabilities. If this is the case, as the disease spreads geographically, the average delay

with which deaths are reported may change, affecting the shape of the curve of reported deaths

independently of the pandemic.

Second, there may be system-wide changes in delays over time. If countries improve their

reporting systems in real time as the pandemic progresses, then death reports could misrepresent

the evolution of the pandemic in different ways over time.

Lastly, there may be decreasing returns in reporting. Hence, as more deaths occur, it may be

less likely that these deaths are reported in a timely manner. This too would imply a different

shape for the curve from reported deaths when making comparisons.

The data and statistical tools needed to account for the reporting delays implied by these three

factors are different and difficult to develop in real time as the pandemic progresses. For geographic

differences, large amounts of data are necessary for each location to correctly model location-specific

delays and correct for them. Time-specific delays and delays related to the total deaths imply that

the corrections should be updated over time. While correcting reports for these factors requires

data from which estimates of delays may be inferred, correcting for delays due to changes in death

counts also requires information on the total deaths that actually occurred in a given moment in

addition to those that were reported.

3.1 Framework

In order to characterize and illustrate the differences in the determinants of the delays in death

reports in Mexico and England, we assume that reports are a series of Bernoulli trials, so that the

number of days it takes for a death to be reported by location l in period t (plus one) follows a

geometric distribution with success probability plt. We further assume that plt can be parametrized

as follows:

plt = p0 · exp(
∑Q

q=1 αqI(deathslt=q)+πl+ξt+εlt)
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simply stating that there is a baseline probability p0 that deaths are reported, which may then be

shifted by certain variables as outlined below. This implies then that:

E (delaylt + 1) =
1

p0 · exp(
∑Q

q=1 αqI(deathslt=q)+πl+ξt+εlt)

where we have only used the fact that the mean of a geometric distribution with parameter p is

equal to 1−p
p .

We proceed by log-linearizing this expression. This allows us to decompose the reporting delays

into location-specific shifters, period-specific shifters, and parameters that measure the response to

the number of occurred deaths through the following ordinary least squares regression:

ln
(
delaylt + 1

)
=

Q∑
q=1

αqI(deathslt = q) + πl + ξt + εlt (1)

where delaylt denotes the average delay in reporting deaths that occurred in location l on date

t, I(deathslt = q) are indicators equal to one if total occurred deaths in a given location and

time fall in a category q, the coefficients αq measure how log delays respond to total deaths that

occurred in a particular location-date, πl denotes reporting unit fixed effects corresponding to the

location-specific shifters (hence, the estimates of these parameters π̂l for each location l recover the

estimates of p0 + pl), ξt are the date-specific shifters, and lastly εlt is an error term that captures

any time-varying location-specific shocks to average delays other than the total occurred deaths.

We run regressions separately for each country, cluster our standard errors by reporting unit to

allow for serial correlation in the error term, and present our results graphically.

3.2 Results

Figure 3 plots the estimated coefficients α̂q from estimating equation 1 for each country, with

Figure 3a using reported data up to 14 days to identify total occurred deaths (k = 14) and Figure 3b

considering 21 days instead (k = 21).6 The vertical bars indicate 95% confidence intervals. We use

integers of total deaths as our categories, with the last category considering 5 or more deaths.7 We

6Table A1 in the online appendix shows the corresponding point estimates.
7Figure A3 in the online appendix presents similar results for Mexico using deciles of deaths per capita, by

matching population at the municipality level from the 2010 census. We were unable to find a consistent mapping
between population and NHS trusts.
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take one death as the excluded category, so that our estimated effects are relative to the average

delay for reporting units with one death.

Our point estimates are larger for Mexico across specifications. In Figure 3a, we interpret this

to mean that, accounting for location and date effects, the occurrence of two deaths significantly

increases the average delay by 0.056 log points in England, which can be approximated as 5.6%,

and by 0.129 log points in Mexico on average, or around 12.9%, relative to when there is only one

death. For five or more deaths, we find that average delays significantly increase by 0.125 and 0.136

log points for England and Mexico, respectively, relative to the average delay when there is one

death only. Importantly, the estimates of how changes in the death toll affect delays are calculated

from variation within each reporting unit over time, accounting for system-wide trends in delays.

Hence, our results in Figure 3 are not conflating occurred deaths with the general progression or

regional variation of death counts and delays.

Over all, these results show that total death counts matter for average delays, regardless of any

spatial and temporal differences, and that they matter much more in Mexico than in England. This

relationship is in line with reporting units becoming overwhelmed by higher death tolls, which is

exacerbated by settings with low state capacity. Alternatively, a higher death toll may increase

the likelihood that at least some deaths require further testing and scrutiny before being reported,

which would lead to larger average delays.

Figure 4 shows the estimates of the reporting unit fixed effects. Each coefficient indicates the

average shift in delays relative to the excluded location, net of general time trends and accounting

for variation in total deaths.8 Since there is no commonality in reporting units between England

and Mexico, we normalize the median reporting unit for each country in terms of its estimate to

zero and order them by size to allow comparability. Figure 4a considers k = 14 and 4b k = 21 .

The results show that the predicted shift in log average delays is more homogenous for England

than Mexico, as noted by the larger slope in the coefficients for Mexico. Given that for Mexico each

estimate is obtained from a smaller number of observations,9 it should not be surprising that these

estimates exhibit a higher variance. However, the confidence intervals for Mexico and England do

8We arbitrarily exclude East Coast Community Healthcare, Beccles Hospital for England, and Aguascalientes
municipality in the state of Aguascalientes for Mexico.

9For example, for k = 14, each reporting unit has on average 27.5 and 6.2 days with occurred deaths in England
and Mexico, respectively.
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not overlap for a large share of the estimates in both tails of the distribution. This indicates that,

indeed, geographic variation in delays is significantly higher in Mexico.

We argue that the larger spatial heterogeneity in Mexico is related to the lower state capacity

of this middle-income country, relative to England. Figure A4 in the online appendix shows the

correlation between the estimated municipality shifters and various measures of healthcare infras-

tructure. These plots show that the locations with larger reporting delays, net of time effects and

the actual death toll, are those with fewer healthcare units per capita, higher patient loads per

healthcare unit, and a smaller share of the population covered by the public healthcare system.

Hence, this is consistent with state capacity playing an important role in delays.

Finally, we show our estimates of the date effects in Figure 5. The excluded category here is the

first calendar day with available data for both countries, April 20. Once again, each plot considers

alternative values of k. The point estimates show a decreasing effect over time for England up

to April 20. This suggests that NHS trusts improved their reporting over time. For the dates in

which we observe data for both countries, the point estimates are mostly flat for both England

and Mexico.10 Over all, the estimates of the date fixed effects show that England decreased its

delays over time, and that, contrary to what the raw data may suggest, there is not much of a

relationship between average delays and time for Mexico, once we account for location effects and

occurred deaths.

Taken together, the results in Figures 3 - 5 suggest than correcting for reporting delays may not

be a straight-forward task, since detailed information by location is needed and a single correction

factor is unlikely to capture the heterogeneity we document. Moreover, tracking the evolution of

COVID-19 from death reports may deliver a biased representation of the epidemic curve that is

not comparable across locations.

4 Implications for epidemiological modeling

The results presented in section 3 suggest important challenges for the development of algorithms

that can systematically correct for reporting delays, given the heterogeneity we document. We now

emphasize the importance of taking delays into account by highlighting how they may affect model

10Note that there is perhaps a slight increasing trend in the point estimates for Mexico, although the evidence is
not strong. This trend is most obvious in Figure 5a.
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estimates that are commonly used to support predictions and policy interventions (Zhang et al.,

2020; Dehning et al., 2020).

We proceed by contrasting estimates based on reported deaths relative to two alternative ways

of counting deaths. First, we consider actual occurred deaths, as reported up to k days after

the fact. Second, we consider a hypothetical scenario in which reporting delays are fourteen days

shorter than observed, by taking the difference between cumulative occurred deaths at time t and

at time t− 1 as reported at time t+ 14 and t+ 13, respectively. It is important to stress that our

objective is not to provide accurate forecasts about the dynamics of the infection in England and

Mexico. Instead, we simply illustrate how reporting delays directly impact short-run analyses in

modeling the evolution of the COVID-19 pandemic.

To this end, we use a simple homogeneous mixing agent version of the SIR model (Kermack

and McKendrick, 1927).11 SIR models are relatively tractable and remain an important tool in

epidemiological analysis (Hethcote, 2000), including the current epidemic (Verity et al., 2020; Fox

et al., 2020; Kucharski et al., 2020; Giordano et al., 2020). In our model, we allow for time-dependent

frequency of contacts to capture the effect of individual behavioral changes or containment policies

(Maier and Brockmann, 2020), as this improves fit (Fernández-Villaverde and Jones, 2020). We

then evaluate how the main predictions change when the model is estimated using different death

counts as outlined above.

4.1 Model setup

Our model is based on Fernández-Villaverde and Jones (2020).12 The model considers an initial

uniform population of mass P0.13 Assume the time period to be one day. After the outbreak of the

epidemic, each individual of the population can be in either one of the following five states at date

t: susceptible St, infected It, resolving Rt, recovered Ct, or dead Dt. Since the dead individuals are

11In the classic SIR model, population is compartmentalized into three states: susceptible, infected, and recovered
(also called resistant or removed).

12We model behavioral responses exogenously, as in Fernández-Villaverde and Jones (2020). Other recent studies
have attempted to endogenize behavior in an optimizing environment where adjustment occurs directly at the contact
level (Greenwood et al., 2019; Dasaratha, 2020), or indirectly through decisions of consumption and production
(Eichenbaum et al., 2020; Krueger et al., 2020; Acemoglu et al., 2020). For simplicity, we abstract from endogeneizing
behavior, although our model could be extended accordingly.

13Acemoglu et al. (2020) considers heterogeneity of the population across age groups. It would be straight-forward
to extend our model in this way as well.
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removed from the population, at every point in time the total population Pt equals:

Pt = St +Rt + It + Ct

We assume that an infection occurs when a susceptible person enters in contact with an infected

person at a rate of βtIt/Pt, where βt represents the number of random contacts a susceptible person

has with the rest of the population and is assumed to change with t to capture behavioral responses

to the disease.

The system evolves according to:

St+1 = St − βtStIt/Pt + Ct

It+1 = It − βtStIt/Pt − γIt

Rt+1 = Rt − γIt − θRt

Dt+1 = Dt + δθRt

Ct+1 = Ct + (1− δ)θRt

where the parameter γ captures the rate at which infected agents start recovering and cease to be

infectious, and θ is the rate at which recovering agents resolve the disease, where a fraction δ dies

while the remaining (1 − δ) recovers and acquires immunity. The epidemic begins with an initial

(exogenous) mass of infections I0. Once contagion starts spreading, we allow for time-dependent

frequency of contacts, either due to individual behavior changes or public containment policies,

according to:

βt = βfinal + (βinit − βfinal)e−λt

where βinit is the initial contact rate across agents that converges at a period rate of λ to a βfinal

rate of contact. Note that the model implies a basic reproduction number of Rinit = βinit/γ when

t = 0, which converges to Rfinal = βfinal/γ as t→∞.

The model is then characterized by seven parameters: {γ, θ, δ, λ, βinit, βfinal, I0}. We take the

first three parameters from epidemiological estimates in the literature and estimate the remaining

four parameters which we denote by Φ ≡ {λ, βinit, βfinal, I0}. We take γ = 0.2, meaning individuals
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are infectious on average for 5 days; θ = 0.1, meaning that it takes on average 15 days for the

infection to resolve; and δ = 0.008, which is the case fatality rate (Bar-On et al., 2020).14 We fix

P0 to be the initial population of each country and assume that C0 = D0 = R0 = 0, that is, at

the start of the outbreak there are no fully recovered, dead, or recovering agents. Period t = 0 is

assumed to be the first day when the official total case count of SARs-CoV-2 reaches more than

150 individuals.

Estimates for Φ are then generated by solving

Φ̂ = arg min
Φ

 1

T

t̄∑
t=t

(logDt − logDt (Φ))2

 (2)

using a global minimizer where the death series Dt (Φ) is generated by solving numerically the

system of equations outlined above for a parameter choice of Φ.

We define Dk
t as the deaths that occurred at time t and were reported up to k days afterward,

in line with the data setup used above. With a slight abuse of notation, we define D0
t as the deaths

that were reported on date t, regardless of when they occurred. Hence, since D0
t 6= Dk

t , ∀k > 0

due to reporting delays, the model estimates Φ̂ may change whether one uses deaths by reporting

date D0
t (to Φ̂0) or deaths by date of occurrence Dk

t (to Φ̂k). We additionally present estimates of

the model in a hypothetical scenario in which delays are fourteen days shorter than observed, by

taking the difference between cumulative occurred deaths at time t and at time t − 1 as reported

at time t+ 14 and t+ 13, respectively.

4.2 Model estimates

We estimate the model by solving equation 2 using the data for England and Mexico, considering

k = 14 as before. The dynamics corresponding to the estimation results of this procedure are shown

graphically in Figure 6, with the parameter estimates presented in Table 1.

We find that, for England, the differences in predictions when using deaths when reported,

when reported with a shorter delay, and when they actually occurred are small, consistent with

14This estimate is close to evidence presented in a recent sero-epidemiological national survey undertaken by the
Spanish government from April 27 to May 11 to measure the incidence of SARs-CoV-2 in Spain. The report is
available at https://www.ciencia.gob.es/stfls/MICINN/Ministerio/FICHEROS/ENECOVID_Informe_preliminar_

cierre_primera_ronda_13Mayo2020.pdf.
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the smaller average delays documented above. In contrast, the differences are striking for Mexico,

where we previously found large average delays and considerable heterogeneity. Early estimates

for Mexico based on reported deaths would predict a total number of deaths of about 20 thousand

(after 120 days from the onset) with a peak in daily deaths of 310. However, if the delay were

fourteen days shorter, these estimates change to around 31 thousand total deaths, with a peak of

453 daily deaths (occurring four days later), which implies an increase of about 50%. When using

deaths by date of occurrence, the total number of deaths is not that different from the estimates

from deaths by date reported, but the shape of the epidemic curve changes: the maximum number

of cases is reached eleven days earlier.

Table 1 further shows that the estimation results show a very reasonable fit of the model with

respect to the data, with mean sum of square errors ranging from 0.023% to 0.031% for England,

and 0.011% to 0.158% for Mexico. The superior fit when using revised data, particularly for Mexico,

accrues from the fact that daily new deaths become less lumpy when considering occurred deaths,

as seen for instance in Figure 6d. Moreover, our estimates of the initial number of infected I0

in Table 1 imply severe under-reporting of total SARs-CoV-2 cases, possibly reflecting a sluggish

identification or testing of the first people who contracted the new disease (Li et al., 2020).

Lastly, our results also reveal the importance of taking into consideration behavioral or con-

tainment policies when modeling epidemics, as this affects the basic reproduction number. In our

estimates for Mexico, for example, the initial magnitudes of this parameter Rinit range from 1.6 to

1.8, implying an explosive behavior of contagion, but it then swiftly converges to magnitudes that

are much smaller, with Rfinal ranging from 0.5 to 0.6.

Over all, our model estimates show that, particularly for Mexico, there are large differences

between predictions based on reported deaths and those based on alternative death counts that

incorporate the delays. These large differences seem relevant for authorities that use these predic-

tions to manage the epidemics, especially if we believe that information on model predictions and

subsequent policies affect individual behavior, which in turn impacts the spread of the disease.
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5 Conclusion

This paper analyzes delays in death reports in two distinct settings. Our data analysis for England

and Mexico suggests ample heterogeneity in reporting delays, particularly for Mexico, which we

argue is related to lower state capacity. This heterogeneity may then complicate applying sys-

tematic corrections to the data, since a single correcting factor is unlikely to adequately capture

the full variability of delays. However, failing to accurately account for delays yields drastically

different model predictions, which in turn may impact policy-making and policy implementation

in undesirable ways.

Ignoring reporting delays and their determinants may lead to biased estimates of demand for

healthcare, such as intensive care units (Kissler et al., 2020; Li et al., 2020). Additionally, not con-

sidering these delays may give a wrong perception of the severity of the disease to the general public,

potentially reducing support for containment policies or a lower adoption rate of individual protec-

tive measures. It seems thus imperious that policy-makers recognize early on the role of reporting

delays as well as understanding their determinants when formulating policy and communication

strategies to fight epidemics.
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Figure 1:
COVID-19 Deaths Over Time by Country
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Notes: These graphs show the distribution of deaths over time for each country using the full available data (starting
April 1 for England and April 20, 2020 for Mexico). We distinguish between deaths that actually occurred on a
given date, and deaths that were reported on that date. Figures 1a and 1c show counts of total deaths per day,
while Figures 1b and 1d show total cumulative deaths for England and Mexico, respectively.
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Figure 2:
Average Reporting Delay Over Time by Country
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Notes: These graphs show the distribution of the average reporting delay measured in days for each country. In
Figures 2b and 2c, the data are further stratified by median date of death for the available span of data. We drop
the most recent 14 days of data reports, and delays that are over 14 days. In Figure 2a, the mean for England
is 1.74, and 4.29 for Mexico, implying a difference of 2.56, with a 95% CI [2.45,2.66]. The mean for the first half
of the data for England in Figure 2b is 1.84, and 1.64 for the second half, implying a difference of 0.20, 95% CI
[0.10,0.29]. Lastly, the mean for the first half of the data in Figure 2c is 4.31, 4.28 for the second half, and a
difference of 0.03, 95% CI [-0.19,0.25].
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Figure 3:
Relationship between Total Deaths and Reporting Delays
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Notes: These graphs show the estimated shift in the log average delay in relation to quartiles of total deaths per
reporting unit from estimating equation 1. All effects are calculated relative to the mean shift for the first quartile
(one death). Figure 3a corresponds to data that exclude the last 14 days of available reports, as well as delays
over 14 days (N=5991 for England, N=3660 for Mexico). Figure 3b uses 21 days instead (N=5531 for England,
N=2875 for Mexico). The vertical lines indicate 95% confidence intervals from robust standard errors clustered by
reporting unit.

Figure 4:
Relationship between Reporting Units and Reporting Delays
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Notes: These graphs show the predicted shift in the log average delay across reporting units from estimating
equation 1. The median shift in each series has been normalized to zero to allow comparability. Figure 4a
corresponds to data that exclude the last 14 days of available reports, as well as delays over 14 days (N=5991 for
England, N=3660 for Mexico). Figure 4b uses 21 days instead (N=5531 for England, N=2875 for Mexico). The
shaded areas indicate 95% confidence intervals from robust standard errors clustered by reporting unit. Reporting
units correspond to 198 NHS trusts in England and 749 municipalities in Mexico in Figure 4a, and 198 trusts and
668 municipalities in Figure 4b.
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Figure 5:
Relationship between Date and Reporting Delays
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Notes: These graphs show the predicted shift in the log average delay over time from estimating equation 1.
All date estimates are calculated relative to the mean shift on April 20. Figure 5a corresponds to data that
exclude the last 14 days of available reports, as well as delays over 14 days (N=5991 for England, N=3660 for
Mexico). Figure 5b uses 21 days instead (N=5531 for England, N=2875 for Mexico). The shaded areas indicate
95% confidence intervals from robust standard errors clustered by reporting unit. Our sample includes 54 days for
England and 35 for Mexico in Figure 5a, and 47 days for England and 28 for Mexico in Figure 5b.
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Figure 6:
Model Predictions of Deaths Based on Reported vs Occurred Deaths

(a) England - Cumulative deaths (b) England -Daily deaths

(c) Mexico - Cumulative deaths (d) Mexico - Daily deaths

Notes: These graphs show model predictions of total (Figures 6a and 6b) and daily deaths (Figures 6c and 6d)
as a result of estimating equation 2 Figures 6a and 6c correspond to England, while 6b and 6d are for Mexico.
Each plot shows the model predictions from using reported deaths (not accounting for delays), the hypothetical
scenario with delays that are 14 days shorter, and from using deaths by date of occurrence. To identify occurred
deaths, the data exclude the last 14 days of available reports. Markers represent actual data, while lines show
model predictions.
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Table 1:
Estimates of SIR Model for England and Mexico Based on Reported vs

Occurred Deaths

Mean Sum of Total deaths Maximum Days until max.

I0 Rinit Rfinal λ Square Errors after 120 days daily deaths daily deaths

England

By date reported 5.9 9.71 0.517 0.095 0.00031 25,985 750 40

By date occurred 340.0 5.95 0.467 0.083 0.00024 26,053 754 37

By date reported 194.3 6.25 0.467 0.082 0.00023 26,158 754 38
(14 days later)

Mexico

By date reported 4015.1 1.77 0.627 0.017 0.00158 20,361 310 75

By date occurred 8344.3 1.77 0.627 0.021 0.00011 21,024 328 64

By date reported 9622.9 1.57 0.470 0.010 0.00030 30,510 453 79
(14 days later)

Notes: This table presents the model estimates for England and Mexico corresponding to estimating equation 2. We distinguish
between model predictions that use deaths by the date on which they were reported, deaths as they would have been reported
if delays were fourteen days shorter, and deaths by the date on which they occurred. The first four columns correspond to the
choice parameters defined by Φ. The last three columns show predictions in terms of total deaths after 120 days and the peak
of the predicted epidemiological curve (number of daily deaths and days until reached).
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Appendix for Online Publication

Supplementary Tables and Figures

Figure A1:
Average Reporting Delay Over Time by Country
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Notes: These graphs show the distribution of the average reporting delay measured in days for each country. In
Figures A1b and A1c, the data are further stratified by median date of death for the available span of data. We
drop the most recent 21 days of data reports, and delays that are over 21 days. In Figure A1a, the mean for
England is 2.10, and 5.56 for Mexico, implying a difference of 3.46, with a 95% CI [3.30,3.62]. The mean for the
first half of the data for England in Figure A1b is 2.35, and 1.86 for the second half, implying a difference of 0.49,
95% CI [0.35,0.63]. Lastly, the mean for the first half of the data in Figure A1c is 5.66, 5.47 for the second half,
and a difference of 0.19, 95% CI [-0.16,0.54].
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Figure A2:
Average Reporting Delays and Healthcare Infrastructure in Mexico
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Notes: These graphs show the correlation between average reporting delays measured in days and various measures
of healthcare infrastructure in Mexico. Figure A2a shows the number of healthcare units per 100,000 individuals in
a municipality as measured in 2016, Figure A2b shows the number of healthcare workers per 100,000 individuals in
2016, Figure A2c shows the number of medical consultations per healthcare unit in 2016, and Figures A2d and A2e
show the share of the population in a municipality with public healthcare coverage and without any coverage
according to the 2010 census. Each plot shows the average over 10 bins, as well as a line of best fit. To calculate
delays, we drop the most recent 14 days of data reports, and delays that are over 14 days.
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Figure A3:
Relationship between Total Deaths per Capita and Reporting Delays

in Mexico
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(b) k = 21

Notes: These graphs show the estimated shift in the log average delay in relation to deciles of total deaths per
100,00 people per municipality from estimating equation 1. All effects are calculated relative to the mean shift for
the first decile. Figure A3a corresponds to data that exclude the last 14 days of available reports, as well as delays
over 14 days (N=5991 for England, N=3660 for Mexico). Figure A3b uses 21 days instead (N=5531 for England,
N=2875 for Mexico). The vertical lines indicate 95% confidence intervals from robust standard errors clustered by
municipality.
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Figure A4:
Location Fixed Effects and Healthcare Infrastructure in Mexico
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Notes: These graphs show the correlation between our estimated location (municipality) fixed effects from esti-
mating equation 1 and various measures of healthcare infrastructure in Mexico. Figure A4a shows the number
of healthcare units per 100,000 individuals in a municipality as measured in 2016, Figure A4b shows the number
of healthcare workers per 100,000 individuals in 2016, Figure A4c shows the number of medical consultations per
healthcare unit in 2016, and Figures A4d and A4e show the share of the population in a municipality with public
healthcare coverage and without any coverage according to the 2010 census. Each plot shows the average over 10
bins, as well as a line of best fit. To calculate delays, we drop the most recent 14 days of data reports, and delays
that are over 14 days.
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Figure A5:
Determinants of Delays using the Inverse Hyperbolic Sine

Transformation
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(c) Time effects

Notes: These graphs show estimates from regressions similar to equation 1, using the inverse hyperbolic sine of
average delays instead of the log as in Figures 3-5. The vertical lines and shaded areas indicate 95% confidence
intervals from robust standard errors clustered by reporting unit. We drop the most recent 14 days of data reports,
and delays that are over 14 days.
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Table A1:
Point Estimates of Relationship between Total Deaths and Average

Delays

Data: k = 14 Data: k = 21
(1) (2) (3) (4)

Two deaths 0.056*** 0.129*** 0.056** 0.121***
(0.019) (0.031) (0.025) (0.038)

Three deaths 0.075*** 0.173*** 0.089*** 0.158***
(0.020) (0.037) (0.025) (0.042)

Four deaths 0.099*** 0.176*** 0.103*** 0.220***
(0.025) (0.046) (0.030) (0.066)

Five or more deaths 0.125*** 0.136*** 0.166*** 0.148**
(0.023) (0.040) (0.029) (0.069)

Observations 5,991 3,660 5,531 2,875
R-squared 0.394 0.421 0.371 0.483
Sample England Mexico England Mexico
Mean dep. var. 1.74 4.29 2.10 5.56

Notes: This table presents the point estimates corresponding to cate-
gories of total deaths from estimating equation 1, as shown in Figure 3.
Robust standard errors clustered by reporting unit are shown in paren-
theses. We report the mean average reporting delay for each sample.
*** p<0.01, ** p<0.05, * p<0.1
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